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We started in to relativistic dynamics with an effort to define relativistic momentum.  We 
expect the laws of physics to have the same form in all reference frames, hence they should be 
Lorentz invariant.  The easiest way to do this is to formulate the laws in terms of 4-vector 
quantities.  They should also reduce to familiar Newtonian forms in the small-velocity limit. 

  Mass is defined to be an invariant quantity (all inertial reference frames agree on its 
value) and it is equal to the rest mass.  Ordinary 3-momentum is not Lorentz invariant.  3-
momentum that is conserved in a collision witnessed in one reference frame will not be 
conserved in another one moving by at relativistic speed (see problem 15.54).  We need to 
develop a 4-vector version of momentum.  Start with 𝑥(4) = (𝑥⃗, 𝑐𝑡), and consider taking a 
derivative with respect to time.  The problem is that different inertial observers cannot agree on 
the evolution of time, hence we need a version of time that all observers can agree upon.  This 
would be the proper time interval 𝑑𝑡0 which is the differential change in time when the particle 
of interest is at rest in your reference frame, corresponding to a differential 4-vector of 𝑑𝑥0

(4) =
(0, 𝑐 𝑑𝑡0).  Comparing the invariant length of this 4-vector to that of a general differential 
displacement 𝑑𝑥(4) = (𝑣⃗, 𝑐)𝑑𝑡 yields 𝑑𝑡0 = 𝑑𝑡/𝛾(𝑣), where 𝛾(𝑣) = 1/�1 − (𝑣/𝑐)2 is the γ-
factor associated with particle’s velocity as measured in a given reference frame. 

With this we can define a bone-fide velocity 4-vector that transforms like the space-time 

4-vector: 𝑢(4) = 𝑑𝑥(4)

𝑑𝑡0
= 𝛾(𝑣)(𝑣⃗, 𝑐).  We define the associated Lorentz-invariant momentum as 

𝑝(4) = 𝑚𝛾(𝑣)(𝑣⃗, 𝑐).  Note that the 3-vector part of this reduces to the ordinary Newtonian 
momentum in the 𝑣

𝑐
≪ 1 limit, as required.  Note that momentum now carries a fourth component 

– is this excess baggage or something useful?  Recall Noether’s theorem (and the idea of 
ignorable coordinates in Lagrangians), which says that the homogeneity of space implies linear 
momentum conservation.  Likewise the homogeneity of time implies conservation of energy.  In 
this case the time-like component of the momentum 4-vector is defined as relativistic energy 𝐸 
divided by the speed of light, 𝑝(4) = (𝑚𝛾(𝑣)𝑣⃗,𝐸/𝑐).  In other words 𝐸 = 𝛾(𝑣)𝑚𝑐2. 

To examine the plausibility of this assignment of the relativistic energy, look at its value 

in the small-velocity limit 𝑣
𝑐
≪ 1.  In this limit 𝐸 = 𝑚𝑐2

�1−�𝑣𝑐�
2 ≅ 𝑚𝑐2 + 1

2
𝑚𝑣2 + ⋯, through a 

binomial expansion of the denominator.  The first term is called the rest energy and is a constant 
as far as classical Lagrangian mechanics is concerned, hence it plays no role in Newtonian 
dynamics.  The second term is the Newtonian kinetic energy that we have employed since the 
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get-go.  Thus this definition of energy reduces to our familiar one in the low-speed Newtonian 
limit.  The relativistic kinetic energy can be written as 𝑇 = 𝐸 −𝑚𝑐2 = (𝛾(𝑣) − 1)𝑚𝑐2. 

Finally, from the invariant length of the momentum-energy 4-vector we derived the 
famous relativistic connection between energy, momentum and the rest energy: 𝐸2 = (𝑝⃗𝑐)2 +
(𝑚𝑐2)2, where 𝑝⃗ is the 3-vector part of the 4-vector 𝑝(4). 

  

  


